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Axion decay in a constant electromagnetic background field
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Abstract. We investigate the radiative decay of the axion into two photons in an external electromagnetic
field to one loop order. Our approach is based on the world-line formalism, which is very suitable to take
into account the external field to all orders. Afterwards we discuss how the calculation could be generalized
to finite temperature.

1 Introduction

In order to solve the strong CP problem Peccei and Quinn
[1] proposed that the full lagrangian of the extended stan-
dard model is invariant under a global chiral U(1) sym-
metry, which however is spontaneously broken, leading to
a pseudoscalar Goldstone boson [2], the axion. This parti-
cle couples to fermions, depending on the model either to
the known fermions of the standard model (DFSZ model
[3]) or to some exotic heavy new fermions (KSVZ model
[4]). In the latter case the axions couple to ordinary mat-
ter and radiation mainly by means of the triangle graph
(Fig. 1), leading to an effective two-photon (or two-gluon)
coupling.

Although the original Peccei-Quinn model, which as-
sumed a symmetry breaking at the electroweak scale, is
’ruled out’ by experiment [5], models with a much larger
breaking scale, leading to light and weakly coupled, so
called invisible, axions are still of great interest. Their
astrophysical impact, especially their influence on stellar
evolution, is discussed e.g. in [6–8].

In the present paper we study the axion-two-photon
coupling in the presence of a constant homogeneous elec-
tromagnetic background field. Thus we assume a pseu-
doscalar coupling of the axion field φ′ to fermions,
λ′φ′ψγ5ψ, although the Goldstone character of the ax-
ion would in general require a derivative coupling. It is
argued, however, in [6] and references therein, that the
pseudoscalar coupling leads to the correct results as long
as only one axion is attached to a fermion line. This is
obviously the case for the triangle graph.

Our calculation is based on the world-line formalism
[9–17]. This is a first quantized formalism, originally used
for one loop calculations in quantum field theory. The gen-
eralisation to higher loop orders is however possible as

Fig. 1. Triangle graph

elaborated in the scalar theory and particularly in QED
[14–16]. Although the idea of dealing with particles on a
world-line is quite old [9], it has experienced a renaissance
through the work of Bern and Kosower [10], who derived
a set of new Feynman rules for one loop gluon scattering
amplitudes from string theory, which thus inherited its su-
perior organisation of perturbative calculations. Strasslers
observation that the new set of rules can alternatively be
derived through pathintegral methods has been very use-
ful [11]. In this approach one writes the one loop effective
action as a (super)particle path integral and evaluates this
path integral using world-line Green functions appropriate
to a one dimensional field theory on the circle.

The world-line method is particularly useful in situa-
tions with a constant background field [16] and has been
successfully applied to the calculation of photon splitting
in a strong magnetic field [18]. The description of scalar
and pseudoscalar couplings on the world-line is given in
[19–21]. In [20] the world-line lagrangian was derived by
analogy to the expression in the second order description
of the fermionic one loop effective action in a background
of vector, axial vector, scalar and pseudoscalar fields. Thus
it was mathematically necessary to introduce two further
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bosonic and fermionic degrees of freedom. This procedure
was clarified in [21], where the world-line action for a
fermion coupled to vector, scalar and pseudoscalar fields
is derived from an eight dimensional Dirac operator in six
spacetime dimensions coupled to a gauge field whose first
four components are those of the vector gauge field while
the fifth and sixth components are the scalar respectively
pseudoscalar field. The Dirac fermion however only de-
pends on the first four coordinates. This interpretation is
possible if one doubles the fermion degrees (without alter-
ing the value of the effective action) and introduces the
six Gamma matrices

Γµ =
(

0 γµ

γµ 0

)
, Γ5 =

(
0 iI

−iI 0

)
, Γ6 =

(
0 γ5
γ5 0

)
(1)

which obey the usual anticommutation relations

{ΓA, ΓB} = 2δABI8×8 (2)

The above mentioned six spacetime dimensional Diracop-
erator then has the form:

Σ = Γµ(pµ − eAµ) − Γ5λφ− Γ6λ
′φ′ (3)

Due to the presence of the pseudoscalar field, the effective
action has both a real and an imaginary part, depending
on whether an even or an odd number of pseudoscalar
particles are involved. The real part of the effective action
can be calculated as

Γ< = −1
2

ln Det[Σ] = −
∫ ∞

0

ds

s

∫
P

Dx
∫

A

Dψ e−S (4)

where P and A denote periodic and antiperiodic boundary
conditions resp. and S is the world-line action, which for
the case at hand (i.e. in the formulas of [20] we discard
the axial vector contribution, introduce the fermion mass
by setting the scalar field to φ → m/λ and integrate out
the auxiliary variables x5 and x6 via their ’equation of
motion’) is

S =
∫ s

0
dτ { ẋ

2

4
+

1
2
ψ · ψ̇ +

1
2
ψ5ψ̇5 +

1
2
ψ6ψ̇6 +m2

+λ′2φ′2 − 2iλ′ψ6ψµ∂µφ
′ + ie(ẋµAµ

+2ψµψν∂νAµ)} (5)

As the triangle graph involves only one axion field it con-
tributes to the imaginary part of the effective action. Ac-
cording to [20] its derivative with respect to the pseu-
doscalar field is given by1

δ

δφ′ iΓ= = −
∫ ∞

0

ds

s

∫
P

Dx
∫

P

DψΩφ′e−S (6)

where S is again given by (5), the boundary conditions
for the fermions have changed to periodic ones (as a con-
sequence of the appearance of γ5 in the usual Feynman

1 The normalization stems from a calculation of the anomaly
in four dimensions (see e.g. [32], p.552) and agrees with the one
of [21]

calculation) and the insertion operator is (again for the
case at hand)

Ωφ′ = −iλ′
∫ s

0
dτ

(
1
2
ψµẋµψ6 − imψ5ψ6

)
(7)

When solving the fermionic pathintegral by means of
Wick-contractions with the world-line Green functions, we
have to take into account the periodic boundary condi-
tions of the fermions. There are now fermionic zero modes
and the world-line supersymmetry is no longer broken by
the boundary conditions. Thus we have

Gperiodic
F = ĠB , GB(τ1, τ2) = |τ1−τ2|− (τ1 − τ2)2

s
(8)

where GF/B means the fermionic respectively bosonic
Green function on the world-line.

2 The case {Fµν 6= 0, T, µ = 0}
The amplitude for the coupling of the axion to the elec-
tromagnetic field is given in the world-line formalism by:

M = −
∫ ∞

0

ds

s

∫
P

DyDψ̃µDψ̃5Dψ̃6

∫
dψ(0)

µ dψ
(0)
5 dψ

(0)
6

×
∫
dx(0)(−iλ′)

∫ s

0
dτ ′

(
1
2
ψµẏµψ6 − imψ5ψ6

)
×eiqy(τ ′)eiqx(0)

e−m2s

× exp
{

−
∫ s

0
dτ

[
ẏ2

4
+

1
2
ψ · ψ̇ +

1
2
ψ5ψ̇5

+
1
2
ψ6ψ̇6 + ie(ẏµAµ + 2ψµψν∂νAµ)

]}
(9)

where the integration over the zeromodes has been seper-
ated (x = x(0) + y, and

∫ s

0 dτy
µ(τ) = 0). One has to use

ψµ,5,6 = ψ̃µ,5,6 + ψ
(0)
µ,5,6 in the integrand. As the integra-

tion over the fermionic zeromodes is only nonvanishing if
the integrand contains a factor ψ(0)

µ ψ
(0)
ν ψ

(0)
α ψ

(0)
β ψ

(0)
5 ψ

(0)
6 ,

where the greek indices run from 1 to 4, producing an
εµναβ , one realizes, that the first term of the inserted
operator does in fact not contribute. One also notices,
that

∫ s

0 dτ ψ
(0)
µ,5,6

˙̃
ψµ,5,6 = 0 so that in the kinetic part of

the fermionic world-line action the substitution ψµ,5,6 →
ψ̃µ,5,6 is allowed.

As described in [16] we can seperate the electromag-
netic field into the constant, homogeneous background
field F̄ and the outgoing photon fields F̃ (which are de-
scribed like the axion by plane waves):

Fµν = F̄µν + F̃µν (10)

Using the Fock-Schwinger-gauge for the constant field
yields:

Aµ(τ) = Āµ + Ãµ(τ) =
1
2
yν F̄νµ + ε1µe

ik1x(τ) + ε2µe
ik2x(τ)

(11)
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We realize that the Fock-Schwinger-gauge is compatible
with the Lorentz-gauge, so that we can assume εi · ki =
0, i = 1, 2. The influence of the constant background field
can partially be incorporated by a redefinition of the
Green functions and the fluctuation determinants. In do-
ing so we have to keep in mind the periodic boundary
conditions of the fermions (see Appendix A).

If we expand the interaction part of the exponential
in the integrand of (9) and keep only terms, which are
linear in ε1 and ε2 and which do contribute after the in-
tegration of the fermionic zeromodes, we are left with the
computation of the following expression:

M = −
∫ ∞

0

ds

s

∫
dx(0)

∫
P

DyDψ̃µdψ
(0)
µ dψ

(0)
5 dψ

(0)
6

×e−m2s(−iλ′)
∫ s

0
dτ1dτ2dτ3 (−iψ(0)

5 ψ
(0)
6 m)

×eiqx(0)
eiqy(τ3) 1

2

[
ieÃµ(τ1)ẏµ(τ1) − ie(ψ(0)

µ

+ψ̃µ(τ1))F̃µν(τ1)(ψ(0)
ν + ψ̃ν(τ1))

] [
ieÃµ(τ2)ẏµ(τ2)

−ie(ψ(0)
µ + ψ̃µ(τ2))F̃µν(τ2)(ψ(0)

ν + ψ̃ν(τ2))
]

×
(

1 + iesψ(0)
µ F̄µνψ

(0)
ν − 1

2
e2s2(ψ(0)

µ F̄µνψ
(0)
ν )2

)

× exp
{

−
∫ s

0
dτ

[
ẏ2

4
+

1
2
ieyν F̄νµẏµ

+
1
2
ψ̃ · ˙̃

ψ − ieψ̃µF̄µνψ̃ν

]}
(12)

where we have used
∫
dτ ψ

(0)
µ F̄µνψ̃ν(τ) = 0 and∫ Dψ̃5/6 exp{− ∫ s

0 dτ
1
2 ψ̃5/6

˙̃
ψ5/6} = 1. The τs are inte-

grated over the circle with circumference s and one τ can
be set to zero for convenience because of translational in-
variance on the world-line (in our calculations this will
be τ3). We now perform the Wick-contractions with the
bosonic Green function2 in a constant background field,
i.e. we apply the following rules:

< yµ(τ1)yν(τ2) > = −Gµν(τ1, τ2) (13)

< ẏµ(τ1)ẏν(τ2) > = −Ġ′
µν(τ1, τ2) (14)

< ẏµ(τ1)eiky(τ2) > = −iĠµν(τ1, τ2)

×kνe
iky(τ2) (15)

< eik1y(τ1)eik2y(τ2)eik3y(τ3) > = exp{
∑
m<n

kmµknν

×Gµν(τm, τn)} (16)

< ψ̃µ(τ1)ψ̃ν(τ2) > =
1
2
Ġµν(τ1, τ2) (17)

where the dot and prime mean differentiation with respect
to the first respectively second argument. We get rid of
the term Ġ′

µν(τ1, τ2) = 1
2

(
∂τ1G′

µν(τ1, τ2) +∂τ2 Ġµν(τ1, τ2)
)

2 In the following G always means the bosonic Green function
GB (A.2)

by partial integration, using the symmetry properties:

Ġµν(τ1, τ2) = −Ġνµ(τ2, τ1) (18)

Ġµν(τ1, τ2) = −G′
µν(τ1, τ2) (19)

and noticing that the boundary terms vanish because of
the periodicity of Ġµν(0, τ2) = Ġµν(s, τ2). The unbroken
supersymmetry on the world-line leads to extensive can-
cellations in the calculation. We finally get as our result
(setting k3 = q for convenience):

M = M0 + M1 + M2 (20)

with

M0 = 4mλ′e2
∫ ∞

0

ds

s

∫ s

0
dτ1dτ2dτ3e

−m2s(2π)4

×δ(k1 + k2 + k3)(4πs)−2

× exp{1
2

∑
i 6=j

ki · G(τi, τj) · kj}

×εµ1ν1µ2ν2k1µ1ε1ν1k2µ2ε2ν2 (21)

M1 = 2imλ′e3
∫ ∞

0
ds

∫ s

0
dτ1dτ2dτ3e

−m2s(2π)4

×δ(k1 + k2 + k3)(4πs)−2

× exp{1
2

∑
i 6=j

ki · G(τi, τj) · kj}

×
[
2(k1 · F̂ · ε1)

×
{

(ε2 · Ġ(τ2, τ1) · k1) + (ε2 · Ġ(τ2, τ3) · k3)
}

− (k1 · F̂ · k2)(ε1 · Ġ(τ1, τ2) · ε2)
−(ε1 · F̂ · ε2)(k1 · Ġ(τ1, τ2) · k2)

+ 2(k1 · F̂ · ε2)(ε1 · Ġ(τ1, τ2) · k2)
]

(22)

+ (ε1, k1) ↔ (ε2, k2)

M2 = −1
2
mλ′e4

∫ ∞

0
ds s

∫ s

0
dτ1dτ2dτ3e

−m2s(2π)4

×δ(k1 + k2 + k3)(4πs)−2

× exp{1
2

∑
i 6=j

ki · G(τi, τj) · kj}

×F̄µνF̂µν

[
1
2
(ε1 · Ġ(τ1, τ2) · ε2)

×
{

(k1 · Ġ(τ1, τ3) · k3) − (k2 · Ġ(τ2, τ3) · k3)
}

+ 2(ε1 · Ġ(τ1, τ3) · k3)(ε2 · Ġ(τ2, τ1) · k1)

+ (ε1 · Ġ(τ1, τ3) · k3)(ε2 · Ġ(τ2, τ3) · k3)
]

(23)

+ (ε1, k1) ↔ (ε2, k2)

where we have introduced the notation F̂µν = 1
2εµναβF̄αβ .

Before going on to the finite temperature case we want
to specify our formula to the case described in [22], i.e. we
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neglect the axion mass and assume the crossed field case
( ~E ⊥ ~B,E = B or F̄µνF̄µν = F̄µνF̂µν = 0). In the limit of
a vanishing axion mass we additionally have q ‖ k1 ‖ k2
because of energy-momentum conservation, that means
k1 = −Λq, k2 = −(1 − Λ)q.

We see immediately that under these circumstances
only M1 contributes to the amplitude. Furthermore we
easily verify, that F̄µαF̄αβF̄βν = 0, so that we can use the
expansions (A.5) and (A.6) in M1. In doing so we arrive at
the following formula (see Appendix B for some details):

M = 4imλ′e3
∫ ∞

0
ds

∫ s

0
dτ1dτ2dτ3 e

−m2s(2π)4

×δ(k1 + k2 + k3)(4πs)−2 1
1 − Λ

× exp{1
2

∑
i 6=j

ki · G(τi, τj) · kj}(k1 · F̂ · ε1)

×(ε2 · [Ġ(τ2, τ1) − Ġ(τ2, τ3)] · k2)
+ (ε1, k1) ↔ (ε2, k2) (24)

=
1
4
mλ′e4π−2(2π)4δ(k1 + k2 + q)

∫ ∞

0
ds s2

∫ 1

0
dσ1

×
∫ 1−σ1

0
dσ2 e

−m2s

(
1

1 − Λ
(f1µνF̂µν)(f2µνF̄µν)

× (σ1 − 2σ1σ2 − σ2
1) + (ε1, k1) ↔ (ε2, k2)

)

× exp{s
3

3
e2(q · F̄ · F̄ · q) [−(σ1 − σ2

1)2Λ2

−(σ2 − σ2
2)2(1 − Λ)22σ1σ2(1 − 3σ1 − 3σ2 + 2σ2

1

+2σ2
2 + 3σ1σ2)Λ(1 − Λ)]} (25)

with
fiαβ = kiαεiβ − εiαkiβ (26)

Equation (25) can be shown to be equivalent to the result
obtained in [22], up to an unphysical overall minus sign.
To see the equivalence of the two formulas one would have
to transform the variable s according to

s→ s{e2(q · F̄ · F̄ · q) [2σ1σ2(1 − 3σ1 − 3σ2 + 2σ2
1

+2σ2
2 + 3σ1σ2)Λ(1 − Λ) − (σ1 − σ2

1)2Λ2

−(σ2 − σ2
2)2(1 − Λ)2]}1/3 (27)

perform a Wick-rotation in s and change from Euclidian
to Minkowski space.

3 Remarks about the case
{Fµν 6= 0, T, µ 6= 0}
The finite temperature and density case even without
background field raises some new questions and we first
treat this case. Finite temperature is usually taken into
account on the world-line in the context of the imaginary
time formalism. Thus the time component becomes a cir-
cle with circumference β = 1

T . Under this topological con-
straint the pathintegral in (9), which is over closed paths,

can be written as a sum over pathintegrals without the
topological constraint but each one over paths where the
endpoint differs from the starting point by a multiple of β
in the time component [23, 24]. This takes into account the
different windings of the closed paths on the time-circle.
In order to get the statistics right the sum has to be alter-
nating3. That means, if P β

xy is the pathintegral over paths
from y to x under the topological constraint x4 = x4 +nβ
and P∞

xy is the one without the topological constraint, we
have:

P β
xy =

∞∑
n=−∞

(−1)nP∞
(~x,x4+nβ)y (28)

Thus we are led to calculate the following expression:

M = −4mλ′e2εµναγε1µε2νk1αk2γ

∫ ∞

0

ds

s

∞∑
n=−∞

(−1)n

×
∫

x→(~x,x4+nβ)
Dx
∫

P

Dψ̃

×
∫ s

0
dτ1dτ2dτ3e

ik1x(τ1)+ik2x(τ2)+iqx(τ3)e−m2s

× exp{−
∫ s

0
dτ

(
ẋ2

4
+

1
2
ψ̃ · ˙̃

ψ

)
} (29)

where we have already performed the integration over the
fermionic zero modes. We now have to split the path into
a linear and a periodic part and separate the center of
mass

x(τ) → x(0) + nβ
τ

s
e4 + y(τ) (30)

where e4 is a unit vector in the direction of the fourth
(i.e. time) component. The remaining pathintegrals run
over periodic paths with center of mass zero so that the
usual Green functions can be used for the Wick contrac-
tions (this is true also for the fermionic pathintegrals).
The result we get is:

M = −4mλ′e2εµναγε1µε2νk1αk2γ (2π)4δ(~k1 + ~k2 + ~q)

×δωk1+ωk2+ωq

∫ ∞

0
ds s2

∫ 1

0
dσ1dσ2

×
∞∑

n=−∞
(−1)nei(ωk1σ1+ωk2σ2)nβe− n2β2

4s e−m2s(4πs)−2

exp{s(k1 · k2G̃B12 + k1 · qG̃B1 + k2 · qG̃B2)} (31)

where τ3 has been set to zero again,

G̃Bij = |σi − σj | − (σi − σj)2 , G̃Bi = σi − σ2
i (32)

and ωk are the external bosonic Matsubara frequencies.
We now perform a Jakobi-transformation

∞∑
n=−∞

(−1)n exp{iπ[τn2 + 2zn]} (33)

3 Note that this is not in contradiction to the periodicity of
ψ(τ) on the world-line since ψ(τ) is a world-line and not a
space-time fermion
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= (−iτ)−1/2e− iπz2
τ

∞∑
n=−∞

× exp

{
iπ

[
−1
τ

(
n+

1
2

)2

+ 2
z

τ

(
n+

1
2

)]}

and get4:

M = − 1
2π3/2mλ

′e2εµναγε1µε2νk1αk2γ(2π)4

×δ(~k1 + ~k2 + ~q)δωk1+ωk2+ωq

∫ 1

0
dσ1dσ2 β

−1

×
∞∑

n=−∞

∫ ∞

0
ds s1/2 exp{−s[m2 − k1 · k2G̃B12 (34)

−k1 · qG̃B1 − k2 · qG̃B2 + (ω−
n − ωk1σ1 − ωk2σ2)2]}

= − 1
2π3/2mλ

′e2εµναγε1µε2νk1αk2γ(2π)4

×δ(~k1 + ~k2 + ~q) δωk1+ωk2+ωqβ
−1

∞∑
n=−∞

∫ ∞

0
ds s1/2

×
[∫ 1

0
dσ2

∫ 1−σ2

0
dσ1 exp{−s[m2 + k2

1σ1(1 − σ1)

+k2
2σ2(1 − σ2) + 2k1k2σ1σ2 + (ω−

n − ωk1(1 − σ1)

−ωk2σ2)2]} +
∫ 1

0
dσ1

∫ 1−σ1

0
dσ2 exp{−s[m2 + k2

1σ1

× (1 − σ1) + k2
2σ2(1 − σ2) + 2k1k2σ1σ2

+(ω−
n − ωk1σ1 − ωk2(1 − σ2))2]}

]
(35)

where the ”−” in ω−
n characterizes the Matsubara frequen-

cies as fermionic ones. We can now introduce the chemical
potential via ω−

n → ω−
n − iµ. We convert the sum in (34)

into contour integrals via:

β−1
∞∑

n=−∞
f(iω−

n + µ)

=
1

2πi

[∫ i∞+µ−ε

−i∞+µ−ε

dω
f(ω)

eβ(ω−µ) + 1

−
∫ i∞+µ+ε

−i∞+µ+ε

dω
f(ω)

eβ(ω−µ) + 1

]

= − 1
2πi

[∫ i∞+µ+ε

−i∞+µ+ε

dω
f(ω)

eβ(ω−µ) + 1

+
∫ i∞+µ−ε

−i∞+µ−ε

dω
f(ω)

eβ(µ−ω) + 1

−
∫ i∞

−i∞
dω f(ω) −

∮
C′
dω f(ω)

]
(36)

4 Because of the analytic properties of the integrand it is
possible to change the order of the s-integration and the sum-
mation. This is also confirmed by formula (42) derived with
the Matsubara formalism

Fig. 2. Contour C
′

For the case µ > 0 the contour C
′

is depicted in (Fig. 2)
and we have assumed that f(ω) is analytic in a neighbour-
hood of the line <(ω) = µ and limR→±∞ f(a + iR) = 0
for 0 < a < µ (which is true for the case at hand). In
the following we consider only the case |µ| < m. Then our
f(ω) is analytic inside the contour C

′
and therefore the

last term of (36) does not contribute.
We are thus led to calculate the following expression

for the temperature dependent part:

Mβ =
1
4π
mλ

′
e2εµναγε1µε2νk1αk2γ(2π)4 δ(~k1 + ~k2 + ~q)

×δωk1+ωk2+ωq

∫ 1

0
dσ1dσ2

×
[

1
2πi

∫ i∞+µ+ε

−i∞+µ+ε

dω
(A− (ω − iB)2)−3/2

eβ(ω−µ) + 1

+
1

2πi

∫ i∞+µ−ε

−i∞+µ−ε

dω
(A− (ω − iB)2)−3/2

e−β(ω−µ) + 1

]
(37)

with

A = m2 − k1 · k2G̃B12 − k1 · qG̃B1 − k2 · qG̃B2

B = ωk1σ1 + ωk2σ2 (38)

We now have to deform the ω-contour to the real axis. In
doing so we have to be careful because of the squareroot
cut in the integrand. The details of the calculation can be
found in Appendix C and here we just give the result:

Mβ =
1

4π2mλ
′e2εµναγε1µε2νk1αk2γ(2π)4 δ(~k1 + ~k2 + ~q)

×δωk1+ωk2+ωq

∫ 1

0
dσ1dσ2

∫ ∞

0
dp

×
[

A−1(p2 + 1)−3/2

eβ(
√

A
√

p2+1−µ+iB) + 1

+
βA−1/2(p2 + 1)−1eβ(

√
A
√

p2+1−µ+iB)

(eβ(
√

A
√

p2+1−µ+iB) + 1)2

+
A−1(p2 + 1)−3/2

e−β(−√
A
√

p2+1−µ+iB) + 1

+
βA−1/2(p2 + 1)−1e−β(−√

A
√

p2+1−µ+iB)

(e−β(−√
A
√

p2+1−µ+iB) + 1)2

]
(39)
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In Appendix C we derive this result also with a different
method.

Decomposing (p2 + 1)−1 = −p2/(p2 + 1)−1 + 1 in the
second and fourth term and performing a partial integra-
tion in the −p2/(p2 + 1)−1 part one arrives at a simpler
expression5:

Mβ =
1

4π2mλ
′e2εµναγε1µε2νk1αk2γ(2π)4 δ(~k1 + ~k2 + ~q)

×δωk1+ωk2+ωq

∫ 1

0
dσ1dσ2

∫ ∞

0
dp βA−1/2

×
[

eβ(
√

A
√

p2+1−µ+iB)

(eβ(
√

A
√

p2+1−µ+iB) + 1)2

+
e−β(−√

A
√

p2+1−µ+iB)

(e−β(−√
A
√

p2+1−µ+iB) + 1)2

]
(40)

The general σ-integration looks very complicated here. A
similar problem has been encountered during the investi-
gation of a scalar quantum field theory at two loop level
[31]. One could try to specialize to the case where the rest
frame of the axion is identical with the frame of the heat
bath and perform the analytical continuation in the exter-
nal Matsubara frequencies (iωkj

→ (kj)0−iεj , j = 1, 2 ,
see e.g. [27] and for a general treatment of the relationship
between imaginary-time and real-time finite temperature
field theory also [28-30]). As pointed out in [26] the result
should coincide with the corresponding calculation in the
real-time formalism (see e.g. [25]), if we assume M << m,
where M is the axion mass. The examination of the ana-
lytical continuation has not been finished yet. Some details
can be found in Appendix D.

It is possible to show that our expression agrees with
the one one gets with the usual Matsubara-Feynman-rules,
if one introduces Schwinger parameters and integrates out
the spatial momenta. In order to get (34) one has to use
the relationship between Feynman parameters and world-
line times (see Fig. 3):

α1 = τ1 = sσ1,

α2 = τ2 − τ1 = s(σ2 − σ1),
α3 = s− τ2 = s(1 − σ2) (41)

In detail we have:

M = −ε1µε2νβ
−1

∞∑
n=−∞

∫
d3p

(2π)3
tr

×
[

m− (p/ + k1/ )

(ω−
n + ωk1)2 + (~p+ ~k1)2 +m2

× γµ
m− p/

(ω−
n )2 + ~p2 +m2

× γ5
m− (p/ − q/ )

(ω−
n − ωq)2 + (~p− ~q)2 +m2

γν

]

= −4mεµναγε1µε2νk1αk2γβ
−1

∞∑
n=−∞

∫
d3p

(2π)3

5 This was suggested by H. Sato

Fig. 3. Relationship between Feynman parameters and world-
line times

×
∫ ∞

0
dα1dα2dα3 exp{−α1((ω−

n )2 + ~p2 +m2)

−α2((ω−
n + ωk1)

2 + (~p+ ~k1)2 +m2)
−α3((ω−

n − ωq)2 + (~p− ~q)2 +m2)}

= −4mεµναγε1µε2νk1αk2γβ
−1

∞∑
n=−∞

×
∫ ∞

0
dα1dα2dα3 (4π(α1 + α2 + α3))−3/2

× exp{−m2(α1 + α2 + α3) − (ω−
n )2

×(α1 + α2 + α3) − ω2
k1
α2 − ω2

qα3 + ω−
n

×(2ωqα3 − 2ωk1α2) − ~q2α3 − ~k2
1α2

+
(~qα3 − ~k1α2)2

α1 + α2 + α3
}

(41)
= −4mεµναγε1µε2νk1αk2γβ

−1
∞∑

n=−∞

×
∫ ∞

0
ds(4πs)−3/2s2

∫ 1

0
dσ2

∫ σ2

0
dσ1

× exp{−s[m2 + (ω−
n + ωk1(1 − σ1) + ωk2(1 − σ2))2

+k2
1σ1(1 − σ1) + k2

2σ2(1 − σ2)
+2k1k2σ1(1 − σ2)]} (42)

where we have used tr(γ5γµγνγαγβ) = 4εµναβ with the
Euclidian conventions ε1234 = 1, γ5 = −γ1γ2γ3γ4, γ4 =
iγ0. In order to get the first term in the square brackets
of (35) one has to transform σ2 → 1 − σ2 and n → −n
in (42). The second term in the square brackets of (35) is
derived by interchange of τ1 and τ2.

With the same technique it is possible to treat the case
with a constant background field. The formula we derive
along the lines outlined above is:

M =
λ′m
8π3/2 (2π)4δ(~k1 + ~k2 + ~q) δωk1+ωk2+ωq

∫ ∞

0
ds

×
∫ 1

0
dσ1dσ2dσ3 e

−m2sβ−1
∞∑

n=−∞
exp{k1 · G(τ1, τ2) · k2

+k1 · G(τ1, τ3) · q + k2 · G(τ2, τ3) · q}
× exp{−s(ω−

n − ωk1σ1 − ωk2σ2 − ωqσ3)2}
×
{

M̃0 + M̃1 + M̃2

}
(43)
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with

M̃0 = 2e2s1/2(f̂1µνf2µν) (44)

M̃1 = 4ie3s3/2
[
1
2
(f2µνF̂µν)

(
(ε1 · Ġ(τ1, τ2) · k2)

+(ε1 · Ġ(τ1, τ3) · q)
)

− 1
2
(k1 · F̂ · k2)(ε1 · Ġ(τ1, τ2) · ε2)

+ (k1 · F̂ · ε2)(ε1 · Ġ(τ1, τ2) · k2)

+ (ω−
n − ωk1σ1 − ωk2σ2 − ωqσ3)(ε1)4(f2µνF̂µν)

−1
2
(ε1 · F̂ · ε2)(k1 · Ġ(τ1, τ2) · k2)

]
+ (ε1, k1) ↔ (ε2, k2) (45)

M̃2 = −e4s5/2(F̂µνFµν)
[
1
2
(ε1 · Ġ(τ1, τ2) · ε2)

× (k1 · Ġ(τ1, τ3) · q) + (ε1 · Ġ(τ1, τ3) · q)
× (ε2 · Ġ(τ2, τ1) · k1) +

{
− 1
s

+ 2(ω−
n − ωk1σ1

−ωk2σ2 − ωqσ3)2
}

(ε1)4(ε2)4

−2(ω−
n − ωk1σ1 − ωk2σ2 − ωqσ3){

1
2
(k1)4(ε1 · Ġ(τ1, τ2) · ε2) − (ε1)4

(
(ε2 · Ġ(τ2, τ1)

·k1) + (ε2 · Ġ(τ2, τ3) · q)
) }

+
1
2
(ε1 · Ġ(τ1, τ3) · q)

(ε2 · Ġ(τ2, τ3) · q)
]

+ (ε1, k1) ↔ (ε2, k2) (46)

where we have used (26) and f̂µν = 1
2εµναγfαγ . Ġ(τi, τj) is

of course understood as Ġ(sσi, sσj). It is again possible to
fix σ3 = 0. (εi)4 and (ki)4 mean the fourth (i.e. timelike)
component of the corresponding vector in brackets.

We have seen that the world-line formalism provides a
powerful tool in treating problems with a constant electro-
magnetic background field. The examination of tempera-
ture effects still suffers from the problem, that the occur-
ing integrals are not solvable in general and that the result
has to be continued analytically. These problems have also
been discussed in [31], where it was shown however, that
the world-line method offers an illustrative way of find-
ing the divergent parts of the φ3

6-two-loop-amplitude at
finite temperature. It is too early to draw a final conclu-
sion about the usefulness of the world-line method in finite
temperature field theory. It might also be possible to com-
bine the real time formalism with the world-line method,
so that no problems of analytical continuation occur. Here
investigations are in progress.

Acknowledgements. We would like to thank H. Nachbagauer
and H. Sato for very useful discussions. This work was sup-
ported in part by the TMR network Finite Temperature Phase
Transitions in Particle Physics, EU contract no. ERBFMRXCT
97-0122.

A Green functions and determinants
in a constant background field

In a constant background the defining equation for the
bosonic Green function becomes

1
2

(
δµλ

∂2

∂τ2 − 2ieF̄µλ
∂

∂τ

)
Gλν

B (τ1, τ2)

= δµν

(
δ(τ1 − τ2) − 1

s

)
(A.1)

In the case at hand the fermions obey periodic boundary
conditions. Thus we have [16]:

GB(τ1, τ2) =
1

2(eF̄ )2

(
eF̄

sin(eF̄ s)
e−ieF̄ sĠB12

+ieF̄ ĠB12 − 1
s

)
(A.2)

GF (τ1, τ2) = ĠB(τ1, τ2)

=
i

eF̄

(
eF̄

sin(eF̄ s)
e−ieF̄ sĠB12 − 1

s

)
(A.3)

where

GB12 = |τ1 − τ2| − (τ1 − τ2)2

s
(A.4)

is the well known bosonic Green function on the circle
without background field.

The first few terms of the Taylor expansion in F for
the Green functions are:

GB12 = GB12 − i

3
ĠB12GB12seF̄

+
s

3
G2

B12(eF̄ )2 + O(F̄ 3) (A.5)

GF12 = ĠB12 = ĠB12 + 2i(GB12 − s

6
)eF̄

+
2
3
ĠB12GB12s(eF̄ )2 + O(F̄ 3) (A.6)

where in the expression for GB12 the constant coincidence
limit has already been subtracted (which is possible be-
cause of momentum conservation).

The free pathintegrals in a constant background and
with the fermions obeying periodic boundary conditions
are: ∫

P
Dx exp

{
−1

4

∫ s

0
dτ (ẋ2 + 2iexµF̄µν ẋν)

}
= det

′− 1
2

P [−∂2
τ ]︸ ︷︷ ︸

(4πs)−2

det
′− 1

2
P [I − 2ieF̄ ∂−1

τ ] (A.7)

∫
P

Dψ̃ exp
{

−1
2

∫ s

0
dτ
(
ψ̃

˙̃
ψ − 2ieψ̃µFµνψ̃ν

)}
= det

′ 1
2

P [∂]︸ ︷︷ ︸
1

det
′ 1
2

P [I − 2ieF̄ ∂−1
τ ] (A.8)

where the prime at the determinant reminds at the fact,
that the zeromodes are excluded.
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B Derivation of the formulas (24) and (25)

In the case k1 ‖ k2 ‖ q, because of the antisymmetry
of F and Ġ, the terms proportional to k1 · F̂ · k2 and
k1 · Ġ(τ1, τ2) · k2 do not contribute (realize, that the order
of τ1 and τ2 in the argument of Ġ can be changed because
we are integrating both over the whole interval [0,s]; thus
(18) can be applied to see, that the term does not con-
tribute). In order to derive (24) we take the first term in
the square brackets of (22) as it stands and the last one
with (ε1, k1) ↔ (ε2, k2). Using the fact that k1 = −Λq and
k2 = −(1 − Λ)q we immediately get:

[...] = 2(k1 · F̂ · ε1)
{

(ε2 · Ġ(τ2, τ1) · k1)

+(ε2 · Ġ(τ2, τ3) · q)
}

+ 2(k2 · F̂ · ε1)(ε2 · Ġ(τ1, τ2) · k1)

= 2Λ(1 − Λ)(q · F̂ · ε1)
×
[
ε2 · Ġ(τ1, τ2) · q − ε2 · Ġ(τ2, τ1) · q

]
+

2
1 − Λ

(k1 · F̂ · ε1)

×
[
ε2 ·
(
Ġ(τ2, τ1) − Ġ(τ2, τ3

)
· k2

]
(B.1)

the first summand of (B.1) vanishes upon integration over
the τi as explained above.

To get from (24) to (25) we rescale the τi = sσi and
set σ3 = 0. Furthermore we realize that in the expansion
of ε2 ·

(
Ġ(sσ2, sσ1) − Ġ(sσ2, 0)

)
· k2 only the second term

of (A.6) contributes. The first one is proportional to the
unit matrix and we have εi · ki = 0 because of the Lorentz
gauge choice. The third one is odd under interchange of
world-line times. Thus integration of σ1 and σ2 over the
whole interval [0, 1] yields zero. As already stated in the
text it is easy to verify that F̄µαF̄αβF̄βν = 0.

Moreover in the exponent of exp{ 1
2

∑
i 6=j ki · G(τi, τj) ·

kj} only the third term of (A.5) contributes in the limit of
vanishing axion mass. In this case q2 = 0, so that the first
term yields zero and the second term vanishes because of
the antisymmetry of F̄ .

If we now split the range of integration into (σ1 ∈
[0, 1], σ2 ∈ [0, σ1]) and (σ1 ∈ [0, 1], σ2 ∈ [σ1, 1]) respec-
tively and perform a change of variables (σ1 → 1 − σ1 in
the first case and σ2 → 1 − σ2 in the second case) we see
that both ranges contribute equally and we end up with
formula (25).

C Derivation of formula (39)

Our starting point is Equation (37). We concentrate on
the first of the two integrals, the second one is treated in
an analogous way. The aim is to deform the ω-integration-
contour to the real axis as depicted in (Fig. 4). First we
make a shift in ω by iB and rescale by

√
A

−1
. This is

Fig. 4. Deformation of the ω-contour

possible because
√
A ≥ m > 0 for all values of σ1/2

6.
Thus we get:

∫ i∞+ε+µ

−i∞+ε+µ

dω

[
A− (ω − iB)2

]− 3
2

eβ(ω−µ) + 1

= A−1
∫ ∞+iδ2

1+δ1+iδ2

dω

[
1 − ω2

]− 3
2

eβ(ω
√

A−µ+iB) + 1

−A−1
∫ ∞−iδ2

1+δ1−iδ2

dω

[
1 − ω2

]− 3
2

eβ(ω
√

A−µ+iB) + 1
(C.1)

+A−1iδ
−1/2
1

∫ π

−π

dϕ
e− i

2 ϕ(2 − δ1e
iϕ)− 3

2

eβ((1−δ1 exp{iϕ})
√

A−µ+iB) + 1

In the last integral we have introduced the variable z =
1 − ω = δ1e

iϕ. We have also taken the limit δ2 → 0 here.
The range of integration comes from the fact, that we have
taken the squareroot cut along the negative real axis. As
we are interested in the limit δ1 → 0 the only contribution
from the last integral is

A−12−1i(2δ1)−1/2

eβ(
√

A−µ+iB) + 1

∫ π

−π

dϕ e− i
2 ϕ =

A−12i(2δ1)−1/2

eβ(
√

A−µ+iB) + 1
(C.2)

The first two integrals in (C.1) give the same contribution.
If we have a positive imaginary part for ω the imaginary
part of 1 − ω2 is negative. Therefore we have in the first
integral (1 − ω2)−3/2 =

(
e−iπ(ω2 − 1)

)−3/2 = −i(ω2 −
6 Explicitly we have: A = m2 + 2~k1 · ~k2σ2(1 − σ1) + ~k2

1(σ1 −
σ2

1)+~k2
2(σ2−σ2

2)+2ω1ω2σ2(1−σ1)+ω2
1(σ1−σ2

1)+ω2
2(σ2−σ2

2) for
σ1 ≥ σ2 and a similar expression for σ2 ≥ σ1 (σ1 ↔ σ2, k1 ↔
k2)
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1)−3/2 and a relative minus sign in the second one. If we
introduce the variable p2 = ω2 − 1 we get

−2iA−1
∫ ∞

1+δ1

dω

[
ω2 − 1

]− 3
2

eβ(ω
√

A−µ+iB) + 1

= −2iA−1
∫ ∞

√
2δ1

dp
p−2(p2 + 1)−1/2

eβ(
√

p2+1
√

A−µ+iB) + 1
p.I.
= −2iA−1

[
(2δ1)−1/2

eβ(
√

A−µ+iB) + 1
(C.3)

−
∫ ∞

0
dp

(
(p2 + 1)−3/2

eβ(
√

A
√

p2+1−µ+iB) + 1

+
βA−1/2(p2 + 1)−1eβ(

√
A
√

p2+1−µ+iB)

(eβ(
√

A
√

p2+1−µ+iB) + 1)2

)]

where we have omitted terms which vanish in the limit
δ1 → 0. We see that the singular part cancels the one
from (C.2) and we are left with the first two terms of (39)
if we insert our result into (37).

The second integral of (37) is treated similarly and
leads to the remaining two integrals of (39).

As already mentioned in the text it is possible to derive
(39) in a different way. Startingpoint is (34) in which we
make use of the following identity:∫ ∞

0
ds s1/2e−as =

∫ ∞

0
ds s

2√
π

∫ ∞

0
dp e−(p2+a)s (C.4)

=
2√
π

∫ ∞

0
dp (p2 + a)−2

We get:

Mβ =
1
π2mλ

′e2εµναγε1µε2νk1αk2γ(2π)4 δ(~k1 + ~k2 + ~q)

×δωk1+ωk2+ωq

∫ 1

0
dσ1dσ2

∫ ∞

0
dp[

1
2πi

∫ i∞+µ+ε

−i∞+µ+ε

dω
(A+ p2 − (ω − iB)2)−2

eβ(ω−µ) + 1
(C.5)

+
1

2πi

∫ i∞+µ−ε

−i∞+µ−ε

dω
(A+ p2 − (ω − iB)2)−2

e−β(ω−µ) + 1

]

where A and B are again given by (38). We now apply the
residue theorem in order to calculate the ω-integrals and
use:

Res
iB±

√
A+p2

(
(A+ p2 − (ω − iB)2)−2

e±β(ω−µ)

)

= ∓1
4

[
(A+ p2)−3/2

e±β(iB±
√

A+p2−µ) + 1

+
β(A+ p2)−1e±β(iB±

√
A+p2−µ)

(e±β(iB±
√

A+p2−µ) + 1)2

]
(C.6)

If we rescale p → p√
A

we end up with (39).

D Some remarks
about the analytical continuation

If we try to carry out the program proposed after formula
(40) and additionally use k2

j = 0 and (kj)0 = M
2 where

M is the axion mass and set M = 0 in order to get the
leading order in M

m , the σ-integration becomes trivial and
(39) reads (for µ = 0):

M̃β =
1

2π2m
2λ′e2εµναγε1µε2νk1αk2γ(2π)4 δ(~k1 + ~k2 + ~q)

×δωk1+ωk2+ωq∫ ∞

0
dp

[
m−3 (p2 + 1)−3/2

1 + emβ
√

p2+1

+βm−2 (p2 + 1)−1emβ
√

p2+1

(1 + emβ
√

p2+1)2

]
(D.1)

where M̃β means the leading order finite temperature con-
tribution. We now perform a partial integration of the first
term in the square bracket:∫ ∞

0
dp (p2 + 1)−1/2 (p2 + 1)−1

1 + emβ
√

p2+1
= (D.2)

∫ ∞

0
dp arsinh(p)

(
2p

(p2 + 1)2
1

1 + emβ
√

p2+1

+mβ
p

(p2 + 1)3/2

emβ
√

p2+1

(1 + emβ
√

p2+1)2

)

If we use 2arsinh(p) = 2 ln(
√
p2 + 1+p) = ln

(√
p2+1+p√
p2+1−p

)
we arrive at:

M̃β =
1

2π2m
−1λ′e2εµναγε1µε2νk1αk2γ(2π)4

×δ(~k1 + ~k2 + ~q) δωk1+ωk2+ωq∫ ∞

0
dp

[
p

(p2 + 1)2
ln

(√
p2 + 1 + p√
p2 + 1 − p

)

× 1

1 + emβ
√

p2+1
+mβ

1
p2 + 1

emβ
√

p2+1

(1 + emβ
√

p2+1)2

×
(

1 + ln(
√
p2 + 1 + p)

p√
p2 + 1

)]
(D.3)

This does not coincide with the results of [25, 26]. The first
term in the square bracket is exactly the known result but
we get the additional second term of (D.3).

A closer look at the calculation in the Matsubara for-
malism shows the following: If one continues the external
Matsubara frequencies also in expressions exp{−iβωk1/2},
which is indeed 1, one obtains exactly the additional term.
Such continuations play a role because the angular in-
tegration produces a 1/M2 singularity to be cancelled
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by further factors ∼ M2. This subtlety in the analyti-
cal continuation should be burried in our case in the σ-
integrations, which correspond to the angular integration.
Unfortunately they seem to be rather difficult to handle.
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